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For medical reasons, astronauts in space need to have their mass measured. Currently, this
measurement is performed using a mass-spring system. The current system is large, inaccurate, and
uncomfortable for the astronauts. NASA is looking for new, different, and preferably better ways to
perform this measurement process. After careful analysis our design team decided on a linear
acceleration process. Within the process, four possible concept variants are put forth. Among these
four vaniants, one is suggested over the others.

The vanant suggestedis diat of a motor-winch system to linearly accelerate the astronaut. From
acceleration and force measurements of the process combined Newton's second law, the mass of an
astronaut can be calculated.
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Background and Statement of Problem

Weighing oneself 1s a daily activity for many people. Many simple devices have been
constructed to measure the earth's gravitational pull on the human body. These devices are commonly
known as scales. )

The act of weighing oneself mav only take a few seconds. and the procedure 1s as simple as a
half step up onto the scale. However, the problem examined in this project 1s when the earth no longer
pulls on the body. Measuring the mass of a human suddenly becomes much more complicated under
these circumstances.

NASA has this problem with the astronauts aboard the space shuttle. Although the astronauts
are only in space for a few days at a time, this duration can be long enough for the drastic physiological
effects of weightlessness to develop. Astronauts lose fluids while in microgravity. The fluid in the body
travels from the legs and lower abdomen to the area around the heart and head [NASA, 1988]. This
condition is not normal for the human body, and the body perceives the problem as t00 much fluid in the
body, rather than a shifting of fluid due to an absence of gravity.

As a consequence, fluids are rejected by the body and the astronaut can rapidly lose weight. The
body also does not have to support itself in a microgravity state. The body is not continually working
against gravity as it is on the earth's surface. The body takes on a natural posture. These factors cause
the muscles to atrophy. This deterioration adds to the weight loss of an astronaut.

Due to this weight loss, a way to measure the effect of weightlessness on the body is to monitor
the astronaut's mass. This process of weighing the astronaut seems ordinary and commonplace, but
without gravity the measurement becomes impossible by ordinary means. The absence of gravity also
allows body fluids to move more freely within the body than usual. The movement of these fluids in the
body caused by its ullage can create unwanted oscillations during the body's motion. Therefore, any
measurement that requires the astronaut to be set in motion must consider the astronaut's ullage. The
astronaut's body can be modeled by a double mass spring-damper system.

At present, NASA uses a spring-mass system to measure the astronaut's mass. The mass of the
system is the astronaut, and springs are used to find the resonant frequency of the system. From the
resonant frequency the mass can be calculated. NASA would like to correct many of the disadvantages
of their current mass measurement system. The mass-spring system NASA now uses is large and bulky.
NASA would like a smaller, lighter system to measure the astronaut's mass. The mass-spring system
requires the astronaut to maintain a fetal position during the measurement process in order to closely
replicate a point mass. This position is uncomfortable for the astronauts, and a process that is easier on
the human body is preferred. Finally, the mass-spring system does not have the accuracy that NASA
needs.

Before setting out to solve NASA's problem, our design team felt a need to clarify the task at
hand. The team reviewed the problem statement submitted by the customer, searching for any inherent
bias or ambiguity in the statement. Few problems were found. The initial statement was clear and
straightforward. One bias that was identified was that the statement maintains that the astronaut must
be accelerated. However, several possibilities of performing a mass measurement (i.e., conservation of
momentum, p=mv) come to mind that do not require the body's acceleration. Other than this bias, the
problem statement was clear to our design team.

A concise statement of the problem was arrived at by the design team to give the team direction
in solving the problem. The problem statement was given as follows:



Design an astronaut mass measurement device that is comfortable, accurate. and accounts tor ullage
etfects. -

From here. the team was prepared to begin work on a specification sheet.

Scope and Limitations

There are various human physiological responses to weightlessness that affect the health of the
astronauts. Astronauts lose blood volume, bone densitv, and muscle mass dunng weightlessness. As a
result of these effects, medical personnel need to monitor body mass to help assess the astronauts'
physical condition. This will require a device that can measure the astronauts mass in space. This poses
a very difficult problem due to the absence of gravity. Another difficulty is the complications caused by
the ullage effect.

The main design issue is determining a method for measuring mass without gravity while
accounting for the ullage effect. The ullage effect is a shift of internal body fluids and soft tissue as a
transient response to body acceleration. If the body was accelerated to determine mass, this effect
would need to be accounted for accurately. A model for the human body has been constructed to
account for the "body fluid sloshing" of the ullage effect during calculations. The model consists of two
lumped masses which are 80% and 20% of the total body mass respectively. The two masses are
connected by spring/dashpot assembly in parallel. The resulting system has an undamped natural
frequency of 2 Hz, with a damping coefficient of 0.5. :

Some of the other important design issues for the mass measurement system are accuracy,
comfort, size requirements. The device must be able 1o account for any ullage effects and give an
accurate mass measurement with a resolution of 0.1 pounds, The device must also be comfortable for
the astronaut. To account for comfort, the body position, the time in the device, and any forces or
accelerations applied will need to be considered. The customer has placed a limit upon device mass,
and there are significant constraints on size. These include limits on space allowed for movement of the
astronaut and on stowage volume.

Device Specifications

The design team has generated a list of specifications (Table 1) to serve as a set of guidelines
during the design process. Following the specification sheet is a discussion of important specifications.

Quantification of Customer Requests. Most of the customer's desired device attributes (mass,
accuracy, range, etc.) were quantified in the preliminary specification sheet provided by the customer.
Astronaut comfort, however, required, further development.

We describe comfort as a function of the astronaut's position, the amount of time the astronaut
must assume this position, and the acceleration to which the astronaut is subject. Elaboration on each
these can be found in the discussion of ergonomics.



Table 1: Device specifications
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|Allow determination of an asttonaut's mass while on the Space Shuitie (CR)
Operate in the pressurized portion of the Space Shuttie (CR)
Resolution of 0.045 kg (i.e. +/- 0.023 kg) {CR)
Accuracy of device not affected by the ullage effect (CR)
Kinematics
Allow quick set-up and take-down (<2 howr) (CR)
Allow rapid removal of an astronaut from the device {<.17 howr] (CR)
No tools requred for assembly, disassembly, mantenance. or use {CR)
Ergonomics
Comiontable for the astronauts to use (CR}
Acceleration:
x -2.5gto +25g (DR)
y: mwwnize (DR)
z -1gto +2g (DR)
Revoltion:
Nomovetthrpmaboumyamthmdwebody[DR]
Time:
Minmzethetmv\anhemmhmedhdwicemm
TMmmMMmmeMSMMhMM(DH]
Mwﬂaw&vmdMMs;M&hMWtoﬁh
percentie man (See NASA Std 3000/vol 1/1ev A sec 3) (CR)
Operations
Controls and displays meet NASA Std. 3000/vol 1/1ev A sec 3 (DR)
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Maﬁmmnbadctewpammedadlom&emmm two [one
assistant and one person being measured) (CR)
Use standard signals specified in sec 12 (DA)
Geometry
Slowegovotmbummuewdto.w?m“alcm
Maamum puling or rotational distance allowed = .914m (CR)
M aamum mass 6.8 kg (CR)
Fuamdmuwwumlmmmmm
Emw&smmwww x.43 x .05 m each} [DR)
Environmental Conditions
Temperature 292 - 300K (DR)
Presswe 101.3 kPa (DR)
Withstand it off acceleration of 3g (DR)
Mantenance and Production
Life span of 10 years (DR)

Desimto&NASAmu’Mmstdshmn[DR]
Naddbaambackwurmmnmﬁl
Use standard parts and processes (DR)

Energy
Battery powered, battery Ketime before recharge: 3 hours (CR)
Avaiable power s Xamps at Xvokage (DR)

uncert. anal.

prot. test
prot. test

anaiyt. caic.

fatigue anal.




Operations. Digital readout and number of crew members required for operation were specitied
by the customer. The design team has specified the use of standard Inputoutput devices as described in
section 12 of NASA Standards 3000.vol | rev A.Sec 9. This section discusses such considerations as
the advantages and disadvantages of different tvpes of switches and LO devices. Also addressed are
display considerations such as readabulity, glare, and luminescence. There are additional constraints for
device controls and displays described in NASA Standards Section 9.

connections for anchoring the device. These connections are described in NASA Standards 3000:vol
l'rev A/Sec 11. This section discusses connector selection, identification, alignment, spacing, and
accessibility.

Ergonomics. The ergonomic customer and design requirements are important to the overall
design of the mass measurement device. The customer requires that the device be comfortable for the
astronauts to use [Bourell, 1994). This general restraint can be quantified in more detail to give some
better design guidelines. The device must be designed to fit the user population without causing
discomfort or physical exhaustion. The device should be safe and it must not subject the astronauts
being measured to any stressful movements.

The device must be designed to fit a wide variety of astronauts ranging from the 95th percentile
man to the 5th percentile woman. The device can be designed three different ways to fit users with such
a wide size variety: one size fits all, an adjustable restraint system, or the device can have different sizes
for different user size ranges. Since the device will be used in a 0-g environment, it must be able to
secure the astronaut being measured in a natural 0-g position. Unnatural body postures which must be
maintained for extended periods of time may result in fatigue problems.

Due to the absence of gravity, the mass measurement device might need to accelerate or displace
the astronaut being measured to obtain a mass measurement. The accelerations that the astronaut is
subjected to must be safe and reasonably comfortable. The restrictions on linear acceleration depend on
the magnitude, direction, and duration of the force being applied, the rate of onset and decline of the
applied force, the body positioning and fluid shift, and the extent of microgravity adaptation. Table 2
gives the limitations of linear acceleration.

Table 2: Limits on linear acceleration.

Direction Maghnitude Effects on Astronaut
Positive x T 4 Tolerable up ta 1 hour
Negative x minimal Should be minimized due to pain and discomfort
Positive Z 25 Oifficutty in moving
Negative Z 1 Unpleasant but tolerable
Y minimal Should be minimized to avoid head and neck injuries




There are also restrictions for the rotational acceleration and fatigue that astronauts can
withstand. Most subjects without prior experience can tolerate rotation rates up to 6 RPM in anv axis or
combination of axis [NASA, 1988). The operation of the measuring device will require some 'ph_\'smal
eXertion from the astronauts. Any tasks that might be required of them should not be too strenuous.
The tasks could be performed by any of the crew members, therefore the metabolic energy requirements
of the tasks should be kept 10 to 20% lower than what would be considered tolerable by the least fit of
the users [NASA. 1988]. This will insure that the operation of the device will not tire the astronauts by
requiring too much physical exertion. )

The measurement device must be designed with consideration for the safety of the users. Two of
the primary considerations for crew safety are system failures and design induced crew errors [NASA,
1988]. Both types of errors can cause injury to the crew and the measurement system. There are
numerous safety standards concerning safety design, mechanical and clectrical hazards, guards,
warnings, fire protection, etc. that are very important for the safety design of the measurement device.

Maintenance and Production. Maintenance is a very important design issue during the design
of the mass measurement device. There are many factors that need to be considered when designing for
maintainability. Preventative maintenance should be minimized and require as little crew time as
feasible. If maintenance requires that system operations be interrupted, red_gnd@ysxins‘éhould be
considered. The time, skill level requirements, and training for maintenance operations should be
minimized as much as possible. Any required alignment, calibration, or adjustment should be easily and
accurately accomplished [NASA, 1988]. There should be automatic fault detection and isolation
whenever possible.

Modularity, compatibility, and cost need to be considered during the production design process
of the mass measurement system. The system and its components need to be modular in design by
having interchangeable and common parts with other mission systems. For example, if every screw in
the space shuttle was a Philips screw then if possible use Philips instead of flat screws for the design.
The mass system should also be compatible with existing space shuttle electrical and mechanical
connections. [t should also be compatible with all space shuttle equipment i.e., it should not interfere
with the operation of measurement of any of the space shuttie systems. The cost of matenals, parts, and
required manufacturing processes should be considered when designing all of the components of the
mass measurement device. Use common parts and manufacturing procedures whenever possible.

Power. The mass measurement device will be required to operate from a battery with voltage
and amperage to be given by the customer at a future time. The battery lifetime is three hours before
recharging and its total available power is to be determined later by NASA. This will be the only
available power source other than the physical power from the astronauts using the device. The weight
of the battery has not been given, but needs to be included in the total weight constraint of 66.7 N.

A long system life should be possible by designing for maintainability. The mass measurement
system will only be used a few times a day during space shuttle missions. The space shuttle missions
take up only about 6 months out of the year. Because of the short total duration of most space shuttle
missions and the scattered use of the mass measurement system, a life span of about 10 years should be
expected.



Process Alternatives

Due to the absence of gravity, conventional methods of mass measurement (L.e., the traditional
scale) will be inapplicable. We thought of six possible processes that could be used to measure the mass
of an astronaut: electncal. angular momentum, angular acceleration, linear momentum, linear
acceleration. and calculation from density and volume measurements. To focus our design efficiently,
we felt 1t necessary to eliminate some of the possible mass measurement processes. After some
research, five of the six processes were eliminated. The linear acceleration process scored highest in
our decision matrix. The advantages and disadvantages of each process are described below. F igure |
presents the morphological matrix.

Electrical. The electrical process included two types of electrical measurement to determine the
mass: inductive and capacitive. The inductive process contains a large inductive coil which is
connected to a resonant circuit. The astronaut is placed within the coil and the resonant frequency is
changed by the presence of the body. The resonant frequency changes could be calibrated for different
masses. If the calibration curve was a monatonic function, then a mass could be calculated for a change
in the circuit resonant frequency [Cogdell, 1994]. This idea was abandoned because the magnetic
properties of the human body are so poor that small mass differences could not be detected due to the
lack of sensitivity of the circuit. For example, the change in resonant frequency caused by inducting a
50 kg or a 200 kg body would be about the same (Pearce, 1994]. The strong inductive coil could also
interfere with the some of the space shuttle equipment due to the strong magnetic fields it emits.

The second type of electrical mass measurement process is a capacitive system. Since the
human body is mostly fluid, it has very strong electrostatic properties. The capacitance between two
plates would change dramatically if a body was placed between them. The change could be measured
by a resonant circuit similar two the one in the inductive system. The change in resonant frequency
could be proportional to the mass of the astronaut placed between the plates. Unfortunately,
capacitance is a strong function of the area between the plates. This means that the system would be
more sensitive to the astronaut's area than to his mass. The large capacitive plates could also generate
strong static charges that might interfere with other equipment.

Linear Momentum. In the linear momentum process, we use the conservation of linear
momentum to find the astronaut's mass. The astronaut is secured to a support and moves at a constant
velocity until he or she hits a second mass. The velocity of the astronaut before impact and the
velocities of the astronaut and second mass after impact are recorded. Knowing these values and the
value of the second mass, we use the conservation of momentum to find the mass of the astronaut. The
velocities are assumed to be constant enough over a time period needed to read the speedometers.
Figure 2 shows how this would be done.
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This could work were 1t not for the ullage effect. When the astronaut impacts the second mass.
It causes oscillation of the mass-spring-damper svstem that models the ullage phenomenon  This
oscillation would make calculations complicated, and impair accuracy. This process does not meet any
of the decision cnteria well and is not a teasible option for moving the astronaut. -

vi(a) vi(b) v2fb)
—> impact —> —
[ml @] —> _[@] [#7]
3 b
ml = astronaut vl(a), vi(b), v2(b) measured directly with
m2 = known mass speedometers
Conservation of momentum: m lvl(a) =mlvi(b) + m2v2(b)

Solve forml

Figure 2: Conservation of linear momentum.

Angular Momentum. One possibility for mass measurement is to analyze the law of the
conservation of angular momentum. The idea of the team is to spin the astronaut at a constant angular
velocity and then change one parameter of the equation 'G = rmw,' where 'G' is angular momentum, '’ is
the radius to the center of mass, 'm’ is the mass of the rotating object, and ® is the angular velocity.
Once one parameter of the right hand side is changed then (observing the law of conservation of angular
momentum) the mass can be calculated given that the other variables on the right hand side are
measured or are known.

The team felt that changing © would be difficult. Instead, angular velocity would be one of the
variables easiest to measure for response to a forced change. This elimination left us with the two
remaining possibilities of changing the mass or the radius.

To change the mass the team thought that possibly an astronaut could be rotated about an axis to
impact a second, known mass. The change in the astronaut's rpm could provide enough data to calculate
the mass.

a larger radius. Once again, the rpm change can be measured and the mass calculated. A second idea
involved spinning the astronaut, but this time opposite a counterweight that would change its radius
rather than the astronaut's.

The collision involved with the changing mass idea has negative ullage effects. A collision
causes the body fluids to oscillate in the body. These oscillations affect the accuracy of the
measurement.  Additionally, the weight to be collided with ‘would severely cut into the 15 pound
maximum weight constraint. Even at 15 pounds, the best this amount can change the rpm in the limited



sphere of motion is 17 percent. We want the greatest change possihle so that an accurate measurement
can be taken.

The 1dea of changing radius has a number of problemts. This concept also runs into problems
with ullage. A sharp force is required to move the astropaut as swiftly as possible to the new radiys

a sharp force can also set body fluids in motion. The fluid's oscillations are damped. This damping
dissipates energy and destroys the law of conservation of angular momentum at its toundation. The
counterweight idea solves the ullage problem but brings in new obstacles of its own. Once again. the
weight would need to be less than 15 pounds which does not afford much sensitivity to measurements,
The team inquired whether an already present source of weight on the shuttle could be used. [t was
suggested that we do not rely on such a possibility [Norrell, 1994]. An answer to this is to use an
additional astronaut as a counterweight. Performing the test three times with three different astronauts
alternating places gives the needed information. However, assuming that one astronaut would perform
the measurements while two astronauts are in the apparatus, this solution violates the constraint that no
more than two astronauts can be occupied by the measurement process at any given time.

In addition to the aforementioned, a singular problem exists with any type of angular process in
which the radius needs to be known. The radius to the center of the astronaut's mass must be measured.
The center of mass from head to toe or from chest to back is not easily determined due to the
asymmetric nature of the human body. Variation in body type also make these directions difficult to
work with. Using the direction of left to right on the astronaut's body is more practical if the tip of the
nose is considered near the axis. However, even if this direction is used, once the body begins spinning,
the fluids inside the body will radially migrate, and the center of mass will change. Note that if there
were less of a constraint on the allowable sphere of motion, such discrepancies in the measurement of
the radius might become insignificant.

Angular Acceleration. Angular acceleration measurement is difficult because it involves taking
the resultant of two acceleration components. An object that experiences angular acceleration will have
a normal and tangential component of acceleration. In F igure 3 below, a, = normal acceleration, a, =
tangential acceleration, and a = total angular acceleration.

Figure 3: Acceleration vectors in angular acceleration.



The equations for this tvpe of acceleration are as follows:
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where V = velocity,
t = time, and
p = radius of curvature.

[t would be easier to spin an object at a constant angular velocity and measure only its radial or
normal acceleration. The velocity could be determined by knowing the speed of a motor. A force
transducer, such as a spring, could measure the force. The force would be :

VZ
F=ma =>F=—m )
P

The only problem with this is finding an accurate measure of the radius of curvature, which s
the distance from the rotating axis to the center of mass of the astronaut. Measuring the center of mass
of an astronaut would be complicated since the center of mass varies for each astronaut and the ullage
effect may cause the center of mass to shift when the astronaut is accelerated. Therefore, the angular
acceleration and radial acceleration methods of measuring the mass of an astronaut are not feasible
[Meriam, 1986]. '

Linear Acceleration. One process choice the design team considered used the relationship
between a constant force applied to the mass and its resultant linear acceleration:

F=ma

Upon application of a known force, the acceleration can be measured, allowing calculation of
the astronaut's mass. This method has numerous advantages. Only one mathematical relationship is
involved, and only two quantities need to be measured, so inaccuracy is reduced. Additionally, force (or
pressure) and acceleration are measurable using devices which are already commonly used. As motion
will be linear, device complexity can be minimized.

Possible disadvantages of this method include the difficulty in applying an invariant force. This
might be overcome by the use of an automated measurement system which samples instantaneous force
and acceleration several times each second. A data inquisition program could then receive the
information and calculate the mass.

Another -obstacle is presented by the customer's accuracy demands. A resolution of
approximately 0.00043% has been specified [Norrell, 1994]. This will require a very small full-scale
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uncertainty in the measurement devices. The applied force will also have to be kept below that which
would amplify the ullage effect.

Determination of Mass from Density and Volume. The design team considered determining
mass from astronaut volume and average density. [deally, we hoped to use technology similar to that
used in hospital CAT (Computer Aided Tomography) scans for calculation of astronaut volume and
density.

CAT systems are too massive to be used aboard the shuttle, but there are methods of tomography
which do not require prohibitively massive equipment. Applied potential tomography (APT) is used to
monutor the shift of bodily fluids into the upper body during weightlessness (Barber, 1991). Electrodes
are placed along the length of the astronaut's body, on both front and back. The impedance between
each electrode pair is obtained by sending a current through the subject's body between each pair. This
impedance gives an indication of the fluid present at various locations along the body. By comparing
measurements made under normal and zero-gravity conditions, the shift of fluid is quantified. A simple
diagram of the system is shown in F igure 4.

__-—'_;@ —]

Figure 4: Applied potential tomography set-up. Electrodes are placed along entire body length.

The apparatus necessary for this process has a mass of approximately 5 kg, so mass is not a
problem. However, the process only examines a line through the body, rather than a plane, as in a CAT
scan. Assuming we could obtain a plot of a plane through the body, to obtain the accuracy requested by
the customer we would need to examine thousands of planes. There would also have to be very little
distance between planes.

We cannot obtain the density and volume information necessary for mass calculation with APT.
However, the technology merits future consideration. If the tomography capabilities of CAT systems
can be combined with the portability of APT systems, the result might be a very accurate mass
measurement method.

Process Selection. In order to eliminate some of our process choices we constructed a decision
matrix. We chose different important criteria for our grading and gave weights that corresponded to
their importance, e.g., accuracy (0.5) is more important than complexity (0.2). The total weight of the
tree is one, and each criterion makes up a portion of the total, all criteria summing to one. Figure §
shows the weighting tree for the decision matrix. For this preliminary decision matrix, we decided that
accuracy, ullage effects, and complexity were the main design issues that should be ad d.
Accuracy represents the overall accuracy of the entire process and it carries the most weight. Ullage
éffects are next in importance and they represent the possible problems with the ullage effects
interfering with measurement. The last decision criterion is complexity and this represents the overall
difficulty, number of steps, and moving parts required for each measurement process. [n the process
decision matrix (Table 3) it is obvious that the linear acceleration process wins by a large margin. We
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will eliminate all of the other possible mass measurement processes and continue our design with the
linear acceleration systems.

Design an accurate,
comfortable Mass
Measurement
Device
1.0

0.5 0.3 0.2

Figure 5. Process Decision Matrix Weighting Tree

Table 3: Process Decision Matrix

PROCESS DECISION MATRIX

Spec Accuracy Ullage [Compiexity | Total
Effects
Concept Waeight 05 03 02 1

Angular Momentum (Impact) 60 40 90
30 12 18 60

Angular Momentum (Rotation) |65 55 80
32.5 16.5 16| 65

Angular Acceleration 70 90 a5
35 27 171 79

Linear Momentum 70 40 90
35 12 18| 65

Linear Acceleration (Push) 95 a5 . 195
475 255 19] 92

Linear Acceleration (Pull) 95 85 95
47.5 255 19 92

12



Simulation of Linear Acceleration of Astronaut

To determine the feasibility of our process choice, linear acceleration, we simulated the response
of the body of the astronaut to a linear acceleration. We wanted to get a rough idea of the magnitude of

the time available for force and acceleration measurement. Simulation was done with the use of the
model supplied by the customer in the problem statement. The model consisted of two lumped masses.
One mass represented twenty percent of the astronaut's total mass 'm,’ the other eightv percent.
Connecting the two masses were a spring and dashpot in parallel. The model is pictured in Figure 6.

k

oem [ W o2m
—
b

Figure 6: Idealized model of human body.

The customer described the system as having an undamped natural frequency 'f, of two Hertz,
(or 'wn’ of 12.5 radians/sec) and a damping coefficient 'C' of 0.5. Using this information, we derived
spring stiffness 'k’ and dashpot damping effect 'b' as functions of the astronaut's mass:

k = 157.9m (mvs)
b =12.57m (Ns/m).

Deriving the equations of motion for the astronaut's body was the next step. The 0.2m mass was
assumed to represent the parts of the astronaut's body which prevented description of the body as a
single ngid mass. These included the legs, body fluids, and any other tissue which may move relative to
the accelerating support. We assumed the force would be applied then to the larger 0.8m mass. From a
free body diagram, we obtained the equations of motion;

0.8mx)" + bx}' - bxy' + kxj - kxy =F
0.2mx2" + bxy' - bxj' + kx3 - kx) =0

where xp",xp',and xp, represent acceleration, velocity, and displacement,
respectively for the two masses. N = | for the 0.8m mass, and 2 for the 0.2m mass.

Substituting for 'k’ and b' in terms of 'm,' and converting the equations into four first order
equations (see Appendix B), we were able to enter them into MATLAB for analysis. The analysis
assumed that the idealized model supplied by the customer was correct, that there was no friction
between the astronaut's support and the surface over which it ‘moved, and that the space shuttle itself
was not accelerating the astronaut. Additionally, we assumed there would be negligible movement of
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the shuttle resulting from conservation of momentum during astronaut acceleration  This seemed a
reasonable assumption. as the force we expected to apply was on the order of 10 N.

Using MATLAB, we obtained plots ot displacement and velocity versus time for 40. 70. and |04
Kg astronauts (these were the approximate minimum. mean. and maximum astronaut masses to be
measured). We were looking for the development of a constant acceleration of the two masses.
Additonally, we wanted to see if this acceleration would develop (i.e., the ullage effect would damp
out) betore the astronaut moved the maximum displacement of 0.9144 m.

Examining the velocity plots (Appendix A), we saw that, for each of the three test masses, the
0.8m and 0.2m masses each developed a constant acceleration (indicated by the constant, positive slope
of the velocity curve) within one second of application of the force. This would give sufficient time tor
measurement, as in each case the displacement did not reach 0.9144 m until at least 3.5 seconds after
application of the force.

To get an idea of the power requirements, we assumed that we would apply the 5 N force along
the 0.9144 distance for a minimum time of 3.5 seconds. This gives an approximate power of | 3 W.
This is probably less than what will actually be required because it does not account for motor
inefficiency, friction losses between the movable surface and its support, and the weight of the movable
surface.

Next we had to consider the acceleration to which the astronaut would be subject when bringing
him to a stop. This did not require computer analysis, but merely application of basic linear motion
equations. We assumed the astronaut was subject to the same 5 N force as in the computer analysis, and
that all necessary measurements could be taken before the subject moves 0.7 m. This left 0.2144 m in
which to stop the subject. This would require that astronauts of 104 kg and 40 kg be subject to
decelerations of 0.16 m/s2 and 0.41 m/s2, respectively. These accelerations were well below the 25g .
maximum stated in our specifications.

Functional Description

Process Description. The process consists of three parts: preparation, execution, and conclusion, as
shown in Table 4.

Table 4: Process description.

Preparation Execution Conclusion

Set up device Activate device Unload astronaut
Calibrate device Transform energy Disassemble and store -
Check safety Accelerate astronaut device

Check system Receive signal

Activate backup system Transduce signal

[nsert astronaut Condition signal

Secure Astronaut Display reading

Deactivate device
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Function Structure. The global function structure, or ‘black box,' shows the overall fiunction that needs
to be accomplished. which is astronaut mass measurement. Energy tlows needed to power the device
are the batterv power and anv human energy that may be necessarv to load, secure, and unload the
astronaut. Energy tlows out of the system will include any losses, such as heat. Matenal flows in and
out of the device will be the astronaut. Signal tlows into the device will include an on/off signal and
human input. such as decisions to turn the device on or off. The signal flows out are the on off signal.

the mass reading, and system operatiorvwarning signals. Figure 7 shows the device's global function
structure.

.--------------------

R By — 3 sy
i Measure !
Astronaut U (] Astronaut
— ' —>
] (]
On/Of >: Mass : On/Of B
Human Signais: : : MSy::qunm >
Legend
D pafem
—— ey Fem
— Ve Pen

Figure 7: Global function structure

The refined function structure is shown in Figure 8. The boundary of the function structure
includes everything the system does from the time it is activated to the time it is deactivated. It does not
include the setting up of the device or its disassembly and storage because the device is not doing
anything. The boundary does include the human powered functions of inserting, securing and unloading
the astronaut, because those functions describe material into and out of the system. The functions
shown in the function structure are discussed below.

Activate power. A human signal, such as the press of a button or a spoken command, is needed
to tell the device to start. The device draws power from a battery and sends out a signal saying it is
activated.

Transform energy. The battery's energy is transformed to useful energy for calibrating, checking
the system and safety, moving the astronaut, and measuring the mass.

Calibrate. A human signal is needed again to tell the system to calibrate, and the system retumns
a signal when it is done.
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Check safery. The system does a safety check after it is calibrated and after receiving a human
signal to start. When the check is finished. it sends a signal back to the operator telling If the device s
sate for an astronaut to be placed in 1it.

Check system.  After an astronaut's safety Is secured, the svstem receives a human signal to
check itself to see if everything is working properly. If everything works, a measurement can be taken.
If everything is not working, a backup svstem is acuvated.

Activate backup system. The backup system is only used when the normal system is not
working. [t sends a signal to the operator when it has been activated, and then measurement can be
executed. [f it is not working, it sends a si gnal informing the operator.

[nsert astronaut. This requires human energy, probably from the astronaut himself

Secure astronaut. Human energy is again needed to make sure the astronaut does not move in a
way to disturb the mass measurement.

Unload astronaut. Human energy is need to release the astronaut and remove him or her from
the device.

Accelerate Astronaut Function Structure. The function 'accelerate astronaut’ is further refined in
Figure 9.

Transform Energy. Useful electrical energy must be transformed into mechanical energy.

Provide Mechanical Advantage. The mechanical energy is used to develop a constant
mechanical force.

Apply Force. When the system is operating properly and the astronaut is ready, a start signal is
given. The constant mechanical force is provided to move the astronaut. Kinetic energy is produced
and an "in use" signal is given.

Guide Astronawt. The astronaut needs to be guided so that he accelerates in a straight line.

Maintain Force. While the force is being applied, the force and acceleration signals are sent to
the measuring devices. Energy is lost from the system due to friction. :

Stop Astronaut. When a stop signal is sent into the system, the astronaut will decelerate. Energy
will also be lost from the system during the deceleration.

Return to Initial Position. Mechanical energy may be needed to return the moving parts of the
device to the initial state. A return signal may be needed to move the system to its initial state. This
way the device will be ready for the next astronaut to use.

Execute Measurement Function Structure. The function ‘execute measurement' can be further
refined in Figure 10.

Receive Acceleration Signals. Useful electrical energy is used to receive the acceleration

signals from the acceleration measurement device.

Recerve Force Signals. Useful electrical energy allows the force signals to be received from the
force measurement device.

Transduce Acceleration Signals. The received acceleration signals may be transduced to another
form (i.e., mechanical to electrical).

Transduce Force Signals. The received force signals may be transduced into another form (e,
mechanical to electrical). '
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Execute Measurement
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Condwion Acceleration Signals.  The transduced acceleration signals mrcht need to he
conditioned into another form (e.g.. amplification). )

Condioned Force Signuls. The transduced force signals might need to be conditioned into
another form te.g.. amplified).

('ulculate Muss. Each set of acceleration and force signals is used to calculate the astronaut's
mass. using the equation F = ma. 'F' is the measured force in Newtons, ‘a' is the measured acceleration
in meters per second squared., and 'm' is the mass in kilograms.

Display Reuding. Once the final mass calculation has been determined. the mass 1s displaved so
that the astronaut can see it.

Solution Principles

We have found various solution principles for the most important functions from our function
structure. There are five main functions that are fundamental to the design of our mass measurement
device. These various functions are presented in Figure 11 by a solution principle morphological
matrix.

The first function is 'transform energy.' This is a process where the useful electrical energy from
our power source is converted into mechanical energy that can be used to linearly accelerate the
astronaut. 'Secure astronaut' describes the process of attaching the astronaut to the device that will be
accelerated. . This function i1s very important to the comfort and stability of the astronaut. The
astronaut's body must be tightly secured to the seat or cart that is accelerated to eliminate any external
body oscillations. If the external body oscillations can be eliminated, then the body, excluding internal
fluids, can be considered part of the cart. This assumption will help simplify the mass calculation. The
next function, ‘accelerate astronaut,’ is broken down into four categories. The acceleration category is
probably the most critical function of the entire system. The accuracy, power required, comfort of the
astronaut, and the magnitude of the ullage effect all depend on how we accelerate the astronaut. The
‘apply/maintain force' category is a function that initially applies and then maintains the force needed to
accelerate the astronaut. The direction of movement describes the direction that the astronaut will be
accelerated. The body position category describes how the astronaut will be positioned during the
measurement process. This will have a great impact on how comfortable the astronaut will be dunng
the process. The last category, 'guide astronaut,' describes what structures will be used to keep the
astronaut guided linearly throughout the entire acceleration and measurement process. How well the
astronaut is guided will influence the linearity of the acceleration and any complications of frictional
losses.

The 'stop astronaut' function involves decelerating the astronaut and bringing him to a eomplete
stop. This function could play an important role in the safety and comfort of the astromaut and the
accuracy of our measurements. The astronaut should be stopped without a sudden jar or jerk that would
cause discomfort or possible injury. At the same time, it is also important to stop the astronaut in the
shortest distance possible. Since the design is limited to 0.9144 meters for astronaut movement, the
distance used to stop the astronaut is precious. Every inch used for deceleration could be used for more
force and acceleration samples that would result in more accurate mass measurements. The mass
measurement function is broken down into two categories: acceleration measurement and force
measurement. The quality and accuracy of both of these measurements will determine the overall
resolution and accuracy of our mass measurement device.
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Concept Variants

Tabie S: Concept vaniants

Variant # | Variang #2 Yariang #3 Variant #4
Function (Motor) (Rail gun) {Piston) (Solenogid)
Transform Energy Motor Magnetic Pneumatic Solenoid
Secure Astronaut Straps Velcro Straps Straps
Apply/Maintain Force Winch Rail gun Air piston
Direction of Movement x-direction x-direction x-direction x-direction
Body Position Sitting Sitting Crouched Sitting
Guide Astronaut Magnetic Magnetic Air Table Bearings
track track
Stop Movement Magnetic Magnetic Pneumatic Bumper
brakes brakes brakes
Measure Acceleration Speedometer Accelerometer  Accelerometer  Accelerometer
Chronometer
Measure Force Motor output  Magnetic Piston output Solenoid
| output output

All four concept variants have the astronaut in a sitting or crouched position. We eliminated the
other positions because they would either let the astronaut wobble and disturb the measurement, or they
would be too uncomfortable for the astronaut. We chose straps or Velcro™ to secure the astronaut
because they would allow the quickest removal from the strongest hold.

In concept variant one (Figure 12), a motor is used to transform electrical energy into kinetic
energy by causing a shaft to rotate at constant angular velocity. As the shaft turns, it winds a cable about
itself, pulling the astronaut attached to the cable. This winch solution principle could use the motor's
mechanical energy output to apply a mechanical force to the astronaut so we put these solution
principles together. The astronaut is in a sitting position strapped to some kind of support. A magnetic
track guides the movement. We thought this solution principle was one of the best to guide the
astronaut because there would be no friction. Because magnetic tracks are used, we chose magnetic
brakes to stop the movement. An accelerometer takes the acceleration measurement and the motor
output gives the force.

PRBEEDING PAGE BLANK NOT FH.MFEP
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Astronaut

/ Motor
+
| Force‘ ) Battery
Magnetic track Rotating shaft

Figure 12: Concept variant one uses a motor-winch combination 1o apply force 1o the astronaut

[n concept variant two, electrical energy is transformed to magnetic energy. The rail gun
solution principle is best matched with this transformation principle because it uses a magnetic field to
provide the force on the astronaut. Figure 13 shows how the rail gun would work. A current runs
through two wires or rails that pass through a magnetic field. This creates a force on two bars placed on
the rails. The astronaut is seated and strapped to a support on top of the bars. Because a magnetic track
guides movement, we picked magnetic brakes to stop movement. An accelerometer measures the
acceleration and the magnetic output gives the force.

Current
m‘:g:gh Accelerating astronaut Current
rails _ Magnetic

L 5
—\/ v

Bars Accelerstion
(Side viewj {Top view

Figure 13: Concept variant two has a current running though a magnetic field to supply acceleration force

In concept variant three, electrical energy is transformed to pneumatic energy. An air piston best
utilizes this form of energy to supply a pushing force on the astronaut (Figure 14). The astronaut is in a
crouched position and attached to a support with Velcro™. An air table guides the astronaut's
movement and pneumatic brakes stop the movement. We thought these solution principles were best
for this vanant because the energy is pneumatic. The air table would also eliminate frictiom An
accelerometer measures the acceleration and the force can be found from the piston output.
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Air Accelerating astronaut

Compressor Piston
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\ | S— \‘ ——
Force on piston Air table

Figure 14: Air compressor provides a force on a piston to move astronaut (not 10 scale)

In concept variant four (Figure 15), electrical energy is again transformed to magnetic energy. A
solenoid can also use this kind of energy. In this case the solenoid causes the magnetic field created by

movement. Like the air table, bearings also keep friction from disturbing the path of motion. An
accelerometer gives the acceleration and the force can be calculated from the solenoid output.

Striker arm
Solenoid
3 Accelerating
Astronaut
Current
around Force

loop

Figure 18: Current in solenoid creates magnetic field which puts a force on the astronaut.

Concept Variant Discussion

Rail Gun. Acceleration induced by a magnetic field seemed like a good idea until some basic
equations were applied. For a rail gun type configuration, which has a magnetic field crossing fixed
rails that have a moveable cart attached, applying a current creates a force described by:

F =Bl

where | = cart width across the track
1 = current
B = magnetic flux density
F = force

We assumed a force of 10 N to be reasonable and estimated cart width at 0.5m, as well as a
current of 10 amps. We first checked the equilibrium speed to see if the system would move at a high
enough velocity. The equilibrium speed is described by
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where V = voltage
| = cart width,
B = magnetic field density

Since a B field induced by permanent magnets would be too large and require heavy magnets.
we assumed that the B field would be induced by current traveling through a long wire. Then we
calculated how far from a long thin wire we could experience the desired B field. This is described by

{
B=#0H=ﬂa;

where r = the distance from the wire where the desired magnitude of the B
field will be located
Ho = 4n*10E-7 Henrys/meters
i = current in the wire

Solving for r, we get

"= e

For a force of 10 Newtons and an estimated cart width of 0.5 meters, if i = 10 amps, then B = 2
Tesla. The astronaut cannot safely be exposed to magnetic fields of this intensity. The equilibrium
speed is 2.5 meters/second. This is enough to get the acceleration that we ‘need:-however, the system
would have to be 0.000001 meters away from the wire inducing the 2 Tesla field  This is an
unreasonable distance. Solving these equations for different currents and magnetic field densities did
not yield any reasonable results, so this concept variant is not feasible because either the B field or the
current is too great [Cogdell, 1990].

Piston. An acceptable force needed to move the astronaut was calculated to be about 10N. This
small force requires a low pressure. We looked at a catalog of various types of compressors and found
they could produce a pressure range of 15-60 psi (101.3-414 kPa) [McMaster, ] We used the least
possible pressure and calculated the necessary piston diameter:
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4= L S0V =9662~10"m*
P 101 325kPa

where F = force
P = pressure
A =area

where d = piston diameter

d =44/ m'* =(4(9.662x 107 m*)/ D' *= 0. 1mm

This small diameter prevents using a compressor and piston to push the astronaut from being
feasible.

The air piston could possible be used with a vacuum, pulling the astronaut by having a negative
pressure differential on-tire sides of the piston rather than pushing the astronaut with a positive pressure
difference. However, it would be hard to control the vacuum. For both the compressor and the vacuum,
the volumetric capacity must be changed during the measurement to accelerate the piston. Varving the
capacity requires varying the drive motor's rpm. Most electric motors run at constant or nearly constant
speeds.

Solenoid. The next concept variant involved a solenoid to transform the electric energy from the
power source into mechanical energy that can be used to linearly accelerate the astronaut. One of the
advantages of using a solenoid is that it produces a constant force every time it is activated by the
appropriate current. Unfortunately the force is constant only at given strike distances. The solenoid
could possibly apply a continually increasing force if the astronaut were accelerated through the entire
distance of the strike. A disadvantage of this idea is that most solenoids have a maximum strike
distance of about 1.25 cm [Electronic, 1991]. This is not a long enough distance for the ullage effect to
dampen out completely or for a sufficient number of force and acceleration samples. A special solenoid
could be designed with a 2 to 3 foot striking distance to overcome these problems. The overall length of
a solenoid is approximately three times the length of its striking distance. Therefore a custom designed
solenoid that could successfully accelerate the astronaut would be about 8 feet long. A solenoid of these
dimensions is not feasible for our size and mass constraints.

Another disadvantage of this concept variant was that the astronaut is guided with bearings.
Even though bearings give positive, physical guidance, the friction caused by the bearings complicates
mass calculations and our computer model. The energy losses caused by friction will vary for each
astronaut due to the different force needed to accelerate each individual astronaut.

Motor-winch system. After grading the concept variants in the decision matrix, the team found

that the variant with the highest grade by quite a margin is the motor-winch variant. The system has
many unique attributes which raise it above other choices. The most singular feature is the way in
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which the svstem applies a force. The use of a winch allows a constant force to be applied to a body
that 1s accelerating at a constant rate. None of the other variants are able to do this quite as eastlv as a
motor-winch apparatus.  All ot the components are simple and commonlyv found in industn  The
vanant 1s not like others that require a sophisticated type of technology that may not be as reliable and
as proven as an electric motor and a winch. The design team also felt that either the shaft of the motor.
the connection from the winch to the cart. or the current into the motor can provide an accurate
measurement of the torce applied.

The basic concept involves a winch pulling a cart with a constant force at a constant
acceleration. An electric motor drives a winch which is attached to a flexible tension line. The line s
connected at the other end to a sliding cart. The cart is guided by magnetic tracks with poles opposite to
ones attached to the cart. The tension line wraps around itseif on the winch causing the torque radius to
continually change. The motor will exert an increasing torque throughout the measurement process.
however, the cart will speed up as the radius of the winch changes. A simple analogy to make this
clearer is to think of how a tape recorder operates. When a tape recorder is rewinding, the speed of the
tape increases as the tape accumulates on the reel. A film projector is another example.

The motor can be DC or synchronous AC. AC induction motors are too sensitive to torque
changes [Cogdell, 1990]. Induction motors change their speed when the torque they apply changes. AC
synchronous motors maintain their speed regardless of torque. If AC synchronous motors are not
available, shunt connected DC motors maintain their speed sufficiently for the torque changes
experienced in this application. Series connected DC motors are also too sensitive and should be
avoided [Cogdell, 1990].

; The DC motors that are available in the power ranges needed operate at much higher rpm than

needed (around 15,000 rpm). [n addition, the toraue output from these motors is only about 0.05 Nm.
The maximum torque required is approximatety 0.5 Nm. " In order to solve these two problems a gear
box will be needed to slow down the angular velocity and raise the torque supplied by the motor. Belts
are a possibility but they mav stretch and allow the speed to vary. In order to provide a constant force
and speed, a gear box is required.

A winch 1s necessary to transform the rotational energy supplied by the motor to a usable
translational energy. The winch is also used to accelerate the cart or seat that the astronaut sits upon.
By using a single channel winch the tension line is continuously wrapped upon itself. Rotating the
winch at a constant angular velocity will then deliver an increasing velocity to the tension line. The
tension line needs to be of a large enough diameter that when it wraps upon itself it will sufficiently
- change the radius. The tension line must be made of a material that will wrap around a winch of initial
diameter on the order of 25 mm. At the same time the tension line cannot be so flexible that it will
stretch upon the application of tension.

The tension line is connected to a seat or cart where the astronaut is located. The seat only needs
to be large enough so that the astronaut has a place to attach his torso and feet. A back or head support
is a good idea to help reduce the effects of ullage. If there is not enough room for such support its
absence is not critical. Ullage effects in our MATLAB models (see Appendix A) have not been a
problem. The models indicate that minimum restriction will suffice for the 5 N force being applied.

Straps are suggested for restraining the astronaut. Straps are quick and simple to use
Justification for this can be found by thinking about how long it takes for a person to get out of a car's
safety belt, or the time required to remove oneself from an amusement park nde. Straps cam afso be
altered to fit the person using them. This attribute helps meet the constraint for use with 5th percentile
woman to 95th percentile male.
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The magnetic track 1s suggested to minimize the energy disstpated by friction in the svstem  |f
permanent magnets or electromagnets are used to locate and guide a seat along tracks, friction will be
kept to a minimum by the repulsive forces ot the like poles. Magnets work well in space because thev
do not have to support the weight of the astronaut and apparatus only guide the svstem. Mass
constraints could prohibit the use of permanent magnets because of their iron content. The tracks could
be transformed into brakes by reversing the poles of the magnets. The attractive magnetic forces would
pull the astronaut to a stop.

To measure the mass from this system, velocity, time, and force need to be measured. The
acceleration of the cart can be measured by measuring the velocity of the cart at regular time intervals,
High sensitivity speedometers can measure speeds less than 0.3 mv/s with an accuracy of +0.0003 ms
(Davis, 1992]. The force applied to the cart can be measured somewhere in the tension line by using a
force gauge. Force gauges with a range of 10 N can be accurate to within £.01 N [McMaster, 1992).
Assuming that three seconds are available for acceleration measurement, the time will have an accuracy
of £0.0001 seconds. Using uncertainty analysis the total accuracy of mass measurement can be found
from the following equation [Bergman, 1994]:

Um = £((uy dm/dv)2 + (up-dmvdF)2 + (updmidt)2)1/2

where m = mass, v = velocity, t = time, and F = force. By plugging in obtained values on the right hand
side, the accuracy of mass measurement is found to be +0.1 kg. E

Accuracy is a constraint that is not fully met by the motor-winch system. The system does do a
good job of meeting all the other constraints in the specification sheet. The design consists of distinct
separate modules (i.e., motor, winch, seat). These separate modules allow less than two hours for set-
up. As mentioned before, straps to secure the astronaut allow the astronaut to get in and out of the
system quickly. No tools are required for assembly. The modules can be designed so that they can
connect without tools. If any fasteners are needed, wing nuts can be used. The only tools required for
maintenance would probably be for the motor. At most a screwdriver and a pair of wire cutters will be
needed for maintenance.

Specifications that deal with the astronaut's comfort are easily met by the motor-winch system.
The seated position that the astronaut must maintain is less comfortable than a natural posture, but it is
better than the tight fetal position that is currently required of astronauts. The position resembles the
position of a person sitting on a snow sled or in a toy wagon. The measurement only takes 4 to 5
seconds so that the position does not have to be held for more than five minutes. The linear acceleration
the astronaut experiences involves no oscillation or rotation, which additionally adds to comfort of the
astronaut.

The system requires two people to be present. One astronaut is seated in the apparatus while
another astronaut performs the measurement. The system fits into any standard connections. A DC or
AC hook-up for the motor and a connection to secure the track are the only connections required. The
magnetic tracks will minimize wear and further the life of the system. The modularity of the system
also allows damaged parts to be repaired without replacing the whole system.

A power constraint for this project was never decided upon, but with the motor-winch system it
is doubtful that power is a concern. At most, the power required will be between 5 and 10 Watts, an
amount that is less than most household appliances. Another critical specification is the mass and
volume of the system. The largest sections by volume are the seat and track. The seat is estimated to be
450 mm x 450 mm x 40 mm. The track is estimated to be 2 m x 75 mm x 75 mm. Using these
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dimensions with the other components estimated to be much smaller. and assuming the track and seat
can be stored In sections, the motor-winch system should have no problem fitting into two 0 057 m>
storage bins.

Because nothing in the system is structurally cntical. many of the components can be made of
hghtweight matenals. The heaviest components of the svstem will be the magnets on the tracks.
Allowing 3 4 kg for magnets leaves 3.4 kg for the rest of the system. Using catalogs and common
household devices, the other components can be estimated by mass as follows: seat-0.9 kg, track-09 kg,
electronics-0.9 kg, tension line-0.45 kg, motor-0.2 kg.

The motor-winch system is not as flashy as the other concept variants, but 1t solidly performs the
required functions. The electric motor is a reliable and proven device tor transforming electric energy
into mechanical energy. The system secures the astronaut without problems. Straps to be used to secure
the astronaut protect humans in crashing cars, they should have no difficulty securing a person subjected
to a 5 Newton force. As for applying and maintaining a constant force, the motor-winch system is the
best idea the team has come across to this point. The changing radius of the winch insures that force
and acceleration of the cart will be constant. Guiding and stopping the astronaut is done effectively with
a magnetic svstem. The motor-winch system is simple but reliable and functional.

Design Decisions

The criteria with which we graded the concept vanants were accuracy, ergonomics, size, and
power requirements. Accuracy can be further refined to include instrumentation, accuracy, and the
ullage effect on accuracy. Ergonomics breaks into comfort and assembly, and size can be broken into
mass and volume.

The same technique used to find weights for the process decision matrix was used to find
weights for these categories. Accuracy seems to be the major design issue, so it was given a 0.5 weight.
Ergonomics was assigned a 0.3 weight since it is the second most important consideration. Size and
power requirements are about of equal concern, so they were both assigned a 0.1 weight.

Instrumentation accuracy was very important, so it was assigned a weight of 0.4, and the ullage
effect was then weighted at 0.1. Comfort was an important consideration due to problems with a
previous NASA design, so it was given a 0.2 weight. Assembly was not as important so it only received
a 0.1 weight. Mass and volume were of equal concern, so they were each assigned a 0.05 weight. These
are shown in the weight tree of Figure 16.
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Design an accurate,
comfortable Mass

Measurement
Device
1.0
| | 1 1
Accuracy Ergonomics Size Power Required
0.5 0.3 0.1 0.1
Instruments Uliage Comiont Assembly Mass Volume
0.4 0.1 0.2 0.1 0.08 0.08

Figure 16: Concept variant weight tree.

Table 6: Linear acceleration concept variant decision matrix.

LINEAR ACCELERATION CONCEPT VARIANT DECISION MATRIX
Spec instrn | Ullage | Comfort |Assembly; Mass | Volume | Power | Total
Effect Req'd
Concept Waeight| 0.4 0.1 02 0.1 0.05 005 0.1 1
1 95 95 90 80 95 90 5
Motor 38 95 18 8 475 457[] 7.5/ 90.25
2 95 60 75 60 65 85 80
Rail Gun 38 6 15§ 6 3.25| 425 8| 805
3 55 45 75 90 80 80 70
Piston 22 45 15| 9 4I 4 7| 655
4 85 80 90 80 60 30 80
Solenoid 34{ 8 18] 8 3I 1.5 8( 805

After construction of our decision matrix from the weight tree, we graded the various concept
variants to determine the best design. Concept variant 1 (motor) received the highest score by
approximately 10%. The resolution of the decision matrix is approximately 5%. Therefore, we believe
that the first concept variant leads by a large enough margin to be considéred the best design alternative.
Grading our concept variants has forced us to consider the details of the various solution principles. We
have determined some overall advantages and disadvantages of some of the solution principles. The
solenoid offers a constant source of force but the size and mass needs to be reduced somehow. The
motor offers a smooth, constant force on the astronaut and the force calculations are easily calculated
from the motor torque and speed. The sitting position is more comfortable and natural than the
crouched position. The magnetic and air tracks seem superior to the other guidance systems for the
astronaut because of the frictionless cushion they provide for travel. We did not find an accelerometer
capable of achieving the accuracies needed for our mass measurement, but a speedometer coupled with
a chronometer could obtain the desired level of accuracy.
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Conclusions

The design team applied the Pahl and Beitz methodology to generate a conceptual design for an
space shuttle astronaut mass measurement device that will function in microgravity conditions. NASA
will use the device to monitor the effects of microgravity upon the astronauts' bodies. It is not to be
adversely atfected by the ullage effect, or motion of bodilv fluids. While many of the device
constrants, including geometric, operational, and mass considerations, the team had to quanufyv
‘comtort.’ putting 1t in terms of body position, the time in that position, and the acceleration to which the
astronaut is subjected.

We 1dentified independence of the ullage phenomenon, accuracy, comfort and size as major
design issues. We then generated a specification sheet to quantify the customer requests and design
requirements and serve as a guide during the design process.

The team considered several general processes for mass measurement based on different
quantities. bodily electrical properties, angular momentum, angular acceleration, linear momentum,
linear acceleration, and average density. To facilitate further progress, we decided to pursue one
general process rather than try to encompass all of them. We made our selection by initially eliminating
those that were not feasible. These included the electrical properties and average density methods. We
Judged the remainder on the criteria of accuracy, independence of the ullage effect, and complexity and
chose the linear acceleration process.

We refined the black box' global function structure into indivisible sub-functions and selected
those that we deemed critical. For each of these we developed solution principles. Combining different
solution principles, we generated four concept variants: motor-winch method, rail gun method, piston-
driven method, and solenoid method. We judged these on seven criteria: instrumentation, ullage effect
independence, comfort, assembly, mass, volume, and power required. The motor-winch system stood
out over the other variants, the three of which were rated approximately equally.

Future Work

We generated several opportunities for future development and improvement during the design
process. Primary among them is perfection of the motor-winch concept variant we finally selected. The
tether used to connect the moveable platform and winch needs to be flexible in the transverse direction
but not in the axial direction. That is, it must be bendable to facilitate winding around the winch, but
should not stretch, as this could cause inaccuracy. Material selection will be important.

The use of a synchronous motor is an improvement that should be investigated. While it may be
difficult to build a synchronous motor of such small size, such a motor would provide a constant speed,
independent of torque applied. This way, the increasing radius would provide constantly increasing
velocity, regardless of the mass of the astronaut.

The data sampling and acquisition feature of the system must be developed by electrical and
computer engineering personnel. The device should be programmed to receive the information and
perform the necessary calculations.

33



References

Barber, D. C., "Monttoring Body Fluid Distribution in Microgravity Using Impedance

[maging (APT),” Proceedings of the Annual [nternational Conference
[EEE Engineering in Medicine and Biology Society, vol. 13, (1991 ), PP
1947-8.

Beitz, W and Pahl, G., Engineening Design: a Systematic Approach (London: Biddles

Ltd, Guildford and King's Lynn, 1992).

Bergman, T L., Professor of Mechanical Engineering at the University of Texas
at Austin (Austin: 2 February 1994), classroom lecture.

Cogdell, J. R, Foundations of Electrical Engineering (Englewood Cliffs, N. J -
Prentice-Hall, 1990).

+ Cogdell, John, Professor of Electrical Engineering at the University of Texas
at Austin (Austin: 23 March 1994), personal interview..

Davis [n;truméntatign, catalog, vol. 58 (Blatimore: 1992).

Electronic Engineers Masters Catalog, 91-92, Vol. B (Stanford, CT:
Omega Engineering, 1991).

Kistler Piezo Instrumentation, catalog (Amherst, NY.: Kistler Instrument Corporation,

1991).
McMaster | catalog #98 (Chicago: 1992).
Menam, J. L. and L G. Kraige, Engineering Mechanics, Vol. 2, Dynamics, 2nd edition

(New York: John Wiley and Sons, 1986).

NASA Standards 3000, vol.1, revision A (March 1988).
Norrell, Jeff, NASA liaison (Austin: 3 March 1994), personal interview.

Pearce, J. A., Professor of Electrical Engineering at the University of Texas
at Austin (Austin: 23 March 1994), personal interview.

34



Appendix A

35



Displacement (m)

Displacement of 0.8*40 kg Mass, 5N

0.6

-

0.5

1.5

3¢

2.5

Time (s)

35

4.5




Velocity (m/s)

0.7

Velocity ot 0.8*40 kg Mass. SN

—

1.5

2 2.5

Time (s)

37

3.5

4.5




Displacement (m)

Displacement ot 0.2*40 kg

Mass. SN

-~

Time (s)

38




Velocity (m/s)

Velocity of 0.2*40 kg Mass. 5N

T

Time (s)

39




Displacement (m) / Velocity (m/s)

Total Response of 40 kg Mass. 3N

=)
ta
T
i

0 0.5 l 1.5 2 2.5 3 35 4 45 5

Time (s)

40



Displacement (m)

Displacement of 0.8*70 kg Mass. 5N

0.9+
0.8+

0.7

T

0.6 -

0.5

04+F

0.3+

0.2+

0.5

1.5

2.5

Time (s)

41

35

4.5




Velocity (mvs)

Velocity of 0.8*70 kg Mass. 5N

0.4

0.35

0.15

0.1

0.05

b

1.5 2 2.5 3 35 4 4.5 5

Time (s)

42



Displacement (m)

Displacement of 0.2*70 kg Mass. 5N

Time (s)




Velocity (m/s)

Velocity ot 0.2*70 kg Mass. 3N

Time (s)

2




Displacement (m)

Displacement ot 0.8*104 kg Mass. 5N

0.7-

0.2

0.1+

0.5

p—

1.5

25

Time (s)

45

35

4.5




Velocity (m/s)

0.15

0.1

0.05

Velocity ot 0.8*104 kg Mass. SN

-
o
-

0 0.5 I 1.5 2 2.5 3 35 4 4.5 5

Time (s)

10



Displacement (m)

Displacement of 0.2* 104 ks Mass, SN

Time (5)

47



Velocity (m/s)

Velocity ot 0.2*104 kg Mass. 5

Time (s)

48




Displacement (m) / Velocity (mvs)

-0.6

0.8

0.5

1.5

o

2.5

Time (s)

49

35

4.5




Appendix B
Calculations: Derivation of Equations for VIATLAB

Given: ldealized model shown. f = 2Hz, J = 0.5, m = astronaut mass,
x| = displacement of 0.8m mass, x> = displacement of 0.2m mass.

X

l'_> 1 VXZ
k

A

8 Y o.
F——> 0.8m _}_ozm
b

Figure 17: Free body diagram of accelerated astronaut.
Determination of spring stiffness 'k' and damping effect b:'
k =mop2 = m2r)2 = m(2(3.14)2))2 =m(12.572 = 1579 m (Nfm)
b =2Lwym = 25(2af)m
=2(0.5X 2(3.14X2))m
= 12.57m (Ns/m).
Derivation of motion equations:
Applying a constant force F to the 0.8m mass as shown:
ZFx=ma: 0.8mx;"+bxy -bxy' +kxj-kxy=F
0.2mxy" + bx' - bx)' + kx2 - kx| =0.
~ Substituting for 'k' and ' and dividing through by 'm’, we can then obtain a set of four
first-order equations:
X1'=x2'
x2' = 1.25(F(tym) - 15.7xy + 15.7x3 - 198 + 19891
X3 = x4

X4' = - 63y + 63x7 - 790x3 + 790x)

5C



where x| = displacement of 0.8m mass
X2 = velocity ot 0.8m mass
X3 = displacement of 0.2m mass
X4 = velocity ot 0.2m mass
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